Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Cardiovasc Comput Tomogr ; 17(5): 336-340, 2023.
Article in English | MEDLINE | ID: mdl-37612232

ABSTRACT

BACKGROUND: Accurate chamber volumetry from gated, non-contrast cardiac CT (NCCT) scans can be useful for potential screening of heart failure. OBJECTIVES: To validate a new, fully automated, AI-based method for cardiac volume and myocardial mass quantification from NCCT scans compared to contrasted CT Angiography (CCTA). METHODS: Of a retrospectively collected cohort of 1051 consecutive patients, 420 patients had both NCCT and CCTA scans at mid-diastolic phase, excluding patients with cardiac devices. Ground truth values were obtained from the CCTA scans. RESULTS: The NCCT volume computation shows good agreement with ground truth values. Volume differences [95% CI ] and correlation coefficients were: -9.6 [-45; 26] mL, r â€‹= â€‹0.98 for LV Total, -5.4 [-24; 13] mL, r â€‹= â€‹0.95 for LA, -8.7 [-45; 28] mL, r â€‹= â€‹0.94 for RV, -5.2 [-27; 17] mL, r â€‹= â€‹0.92 for RA, -3.2 [-42; 36] mL, r â€‹= â€‹0.91 for LV blood pool, and -6.7 [-39; 26] g, r â€‹= â€‹0.94 for LV wall mass, respectively. Mean relative volume errors of less than 7% were obtained for all chambers. CONCLUSIONS: Fully automated assessment of chamber volumes from NCCT scans is feasible and correlates well with volumes obtained from contrast study.


Subject(s)
Computed Tomography Angiography , Tomography, X-Ray Computed , Humans , Retrospective Studies , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Computed Tomography Angiography/methods , Artificial Intelligence
2.
Front Radiol ; 3: 1144004, 2023.
Article in English | MEDLINE | ID: mdl-37492382

ABSTRACT

Introduction: Deep learning (DL)-based segmentation has gained popularity for routine cardiac magnetic resonance (CMR) image analysis and in particular, delineation of left ventricular (LV) borders for LV volume determination. Free-breathing, self-navigated, whole-heart CMR exams provide high-resolution, isotropic coverage of the heart for assessment of cardiac anatomy including LV volume. The combination of whole-heart free-breathing CMR and DL-based LV segmentation has the potential to streamline the acquisition and analysis of clinical CMR exams. The purpose of this study was to compare the performance of a DL-based automatic LV segmentation network trained primarily on computed tomography (CT) images in two whole-heart CMR reconstruction methods: (1) an in-line respiratory motion-corrected (Mcorr) reconstruction and (2) an off-line, compressed sensing-based, multi-volume respiratory motion-resolved (Mres) reconstruction. Given that Mres images were shown to have greater image quality in previous studies than Mcorr images, we hypothesized that the LV volumes segmented from Mres images are closer to the manual expert-traced left ventricular endocardial border than the Mcorr images. Method: This retrospective study used 15 patients who underwent clinically indicated 1.5 T CMR exams with a prototype ECG-gated 3D radial phyllotaxis balanced steady state free precession (bSSFP) sequence. For each reconstruction method, the absolute volume difference (AVD) of the automatically and manually segmented LV volumes was used as the primary quantity to investigate whether 3D DL-based LV segmentation generalized better on Mcorr or Mres 3D whole-heart images. Additionally, we assessed the 3D Dice similarity coefficient between the manual and automatic LV masks of each reconstructed 3D whole-heart image and the sharpness of the LV myocardium-blood pool interface. A two-tail paired Student's t-test (alpha = 0.05) was used to test the significance in this study. Results & Discussion: The AVD in the respiratory Mres reconstruction was lower than the AVD in the respiratory Mcorr reconstruction: 7.73 ± 6.54 ml vs. 20.0 ± 22.4 ml, respectively (n = 15, p-value = 0.03). The 3D Dice coefficient between the DL-segmented masks and the manually segmented masks was higher for Mres images than for Mcorr images: 0.90 ± 0.02 vs. 0.87 ± 0.03 respectively, with a p-value = 0.02. Sharpness on Mres images was higher than on Mcorr images: 0.15 ± 0.05 vs. 0.12 ± 0.04, respectively, with a p-value of 0.014 (n = 15). Conclusion: We conclude that the DL-based 3D automatic LV segmentation network trained on CT images and fine-tuned on MR images generalized better on Mres images than on Mcorr images for quantifying LV volumes.

3.
Eur Heart J Cardiovasc Imaging ; 24(9): 1269-1279, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37159403

ABSTRACT

AIMS: To determine whether fully automated artificial intelligence-based global circumferential strain (GCS) assessed during vasodilator stress cardiovascular (CV) magnetic resonance (CMR) can provide incremental prognostic value. METHODS AND RESULTS: Between 2016 and 2018, a longitudinal study included all consecutive patients with abnormal stress CMR defined by the presence of inducible ischaemia and/or late gadolinium enhancement. Control subjects with normal stress CMR were selected using a propensity score-matching. Stress-GCS was assessed using a fully automatic machine-learning algorithm based on featured-tracking imaging from short-axis cine images. The primary outcome was the occurrence of major adverse clinical events (MACE) defined as CV mortality or nonfatal myocardial infarction. Cox regressions evaluated the association between stress-GCS and the primary outcome after adjustment for traditional prognosticators. In 2152 patients [66 ± 12 years, 77% men, 1:1 matched patients (1076 with normal and 1076 with abnormal CMR)], stress-GCS was associated with MACE [median follow-up 5.2 (4.8-5.5) years] after adjustment for risk factors in the propensity-matched population [adjusted hazard ratio (HR), 1.12 (95% CI, 1.06-1.18)], and patients with normal CMR [adjusted HR, 1.35 (95% CI, 1.19-1.53), both P < 0.001], but not in patients with abnormal CMR (P = 0.058). In patients with normal CMR, an increased stress-GCS showed the best improvement in model discrimination and reclassification above traditional and stress CMR findings (C-statistic improvement: 0.14; NRI = 0.430; IDI = 0.089, all P < 0.001; LR-test P < 0.001). CONCLUSION: Stress-GCS is not a predictor of MACE in patients with ischaemia, but has an incremental prognostic value in those with a normal CMR although the absolute event rate remains low.


Subject(s)
Contrast Media , Ventricular Function, Left , Male , Humans , Female , Prognosis , Artificial Intelligence , Longitudinal Studies , Magnetic Resonance Imaging, Cine/methods , Gadolinium , Risk Factors , Predictive Value of Tests
4.
JACC Cardiovasc Imaging ; 16(10): 1288-1302, 2023 10.
Article in English | MEDLINE | ID: mdl-37052568

ABSTRACT

BACKGROUND: The left atrioventricular coupling index (LACI) is a strong and independent predictor of heart failure (HF) in individuals without clinical cardiovascular disease. Its prognostic value is not established in patients with cardiovascular disease. OBJECTIVES: This study sought to determine in patients undergoing stress cardiac magnetic resonance (CMR) whether fully automated artificial intelligence-based LACI can provide incremental prognostic value to predict HF. METHODS: Between 2016 and 2018, the authors conducted a longitudinal study including all consecutive patients with abnormal (inducible ischemia or late gadolinium enhancement) vasodilator stress CMR. Control subjects with normal stress CMR were selected using propensity score matching. LACI was defined as the ratio of left atrial to left ventricular end-diastolic volumes. The primary outcome included hospitalization for acute HF or cardiovascular death. Cox regression was used to evaluate the association of LACI with the primary outcome after adjustment for traditional risk factors. RESULTS: In 2,134 patients (65 ± 12 years, 77% men, 1:1 matched patients [1,067 with normal and 1,067 with abnormal CMR]), LACI was positively associated with the primary outcome (median follow-up: 5.2 years [IQR: 4.8-5.5 years]) before and after adjustment for risk factors in the overall propensity-matched population (adjusted HR: 1.18 [95% CI: 1.13-1.24]), in patients with abnormal CMR (adjusted HR per 0.1% increment: 1.22 [95% CI: 1.14-1.30]), and in patients with normal CMR (adjusted HR per 0.1% increment: 1.12 [95% CI: 1.05-1.20]) (all P < 0.001). After adjustment, a higher LACI of ≥25% showed the greatest improvement in model discrimination and reclassification over and above traditional risk factors and stress CMR findings (C-index improvement: 0.16; net reclassification improvement = 0.388; integrative discrimination index = 0.153, all P < 0.001; likelihood ratio test P < 0.001). CONCLUSIONS: LACI is independently associated with hospitalization for HF and cardiovascular death in patients undergoing stress CMR, with an incremental prognostic value over traditional risk factors including inducible ischemia and late gadolinium enhancement.


Subject(s)
Cardiovascular Diseases , Heart Failure , Male , Humans , Female , Prognosis , Longitudinal Studies , Contrast Media , Gadolinium , Artificial Intelligence , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Risk Factors , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Atria , Magnetic Resonance Spectroscopy , Ischemia , Stroke Volume
5.
Eur Radiol ; 32(8): 5256-5264, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35275258

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of a novel artificial intelligence (AI) algorithm for fully automated measurement of left atrial (LA) volumes and function using cardiac CT in patients with atrial fibrillation. METHODS: We included 79 patients (mean age 63 ± 12 years; 35 with atrial fibrillation (AF) and 44 controls) between 2017 and 2020 in this retrospective study. Images were analyzed by a trained AI algorithm and an expert radiologist. Left atrial volumes were obtained at cardiac end-systole, end-diastole, and pre-atrial contraction, which were then used to obtain LA function indices. Intraclass correlation coefficient (ICC) analysis of the LA volumes and function parameters was performed and receiver operating characteristic (ROC) curve analysis was used to compare the ability to detect AF patients. RESULTS: The AI was significantly faster than manual measurement of LA volumes (4 s vs 10.8 min, respectively). Agreement between the manual and automated methods was good to excellent overall, and there was stronger agreement in AF patients (all ICCs ≥ 0.877; p < 0.001) than controls (all ICCs ≥ 0.799; p < 0.001). The AI comparably estimated LA volumes in AF patients (all within 1.3 mL of the manual measurement), but overestimated volumes by clinically negligible amounts in controls (all by ≤ 4.2 mL). The AI's ability to distinguish AF patients from controls using the LA volume index was similar to the expert's (AUC 0.81 vs 0.82, respectively; p = 0.62). CONCLUSION: The novel AI algorithm efficiently performed fully automated multiphasic CT-based quantification of left atrial volume and function with similar accuracy as compared to manual quantification. Novel CT-based AI algorithm efficiently quantifies left atrial volumes and function with similar accuracy as manual quantification in controls and atrial fibrillation patients. KEY POINTS: • There was good-to-excellent agreement between manual and automated methods for left atrial volume quantification. • The AI comparably estimated LA volumes in AF patients, but overestimated volumes by clinically negligible amounts in controls. • The AI's ability to distinguish AF patients from controls was similar to the manual methods.


Subject(s)
Atrial Fibrillation , Aged , Artificial Intelligence , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed/methods
6.
J Cardiovasc Comput Tomogr ; 16(3): 245-253, 2022.
Article in English | MEDLINE | ID: mdl-34969636

ABSTRACT

BACKGROUND: Low-dose computed tomography (LDCT) are performed routinely for lung cancer screening. However, a large amount of nonpulmonary data from these scans remains unassessed. We aimed to validate a deep learning model to automatically segment and measure left atrial (LA) volumes from routine NCCT and evaluate prediction of cardiovascular outcomes. METHODS: We retrospectively evaluated 273 patients (median age 69 years, 55.5% male) who underwent LDCT for lung cancer screening. LA volumes were quantified by three expert cardiothoracic radiologists and a prototype AI algorithm. LA volumes were then indexed to the body surface area (BSA). Expert and AI LA volume index (LAVi) were compared and used to predict cardiovascular outcomes within five years. Logistic regression with appropriate univariate statistics were used for modelling outcomes. RESULTS: There was excellent correlation between AI and expert results with an LAV intraclass correlation of 0.950 (0.936-0.960). Bland-Altman plot demonstrated the AI underestimated LAVi by a mean 5.86 â€‹mL/m2. AI-LAVi was associated with new-onset atrial fibrillation (AUC 0.86; OR 1.12, 95% CI 1.08-1.18, p â€‹< â€‹0.001), HF hospitalization (AUC 0.90; OR 1.07, 95% CI 1.04-1.13, p â€‹< â€‹0.001), and MACCE (AUC 0.68; OR 1.04, 95% CI 1.01-1.07, p â€‹= â€‹0.01). CONCLUSION: This novel deep learning algorithm for automated measurement of LA volume on lung cancer screening scans had excellent agreement with manual quantification. AI-LAVi is significantly associated with increased risk of new-onset atrial fibrillation, HF hospitalization, and major adverse cardiac and cerebrovascular events within 5 years.


Subject(s)
Atrial Fibrillation , Deep Learning , Lung Neoplasms , Aged , Atrial Fibrillation/diagnostic imaging , Early Detection of Cancer , Female , Heart Atria/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Male , Predictive Value of Tests , Retrospective Studies , Tomography, X-Ray Computed/methods
7.
Heliyon ; 6(8): e04728, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32904672

ABSTRACT

While it is well known that the vestibular system is responsible for maintaining balance, posture and coordination, there is increasing evidence that it also plays an important role in cognition. Moreover, a growing number of epidemiological studies are demonstrating a link between vestibular dysfunction and cognitive deficits in older adults; however, the exact pathways through which vestibular loss may affect cognition are unknown. In this cross-sectional study, we sought to identify relationships between vestibular function and variation in morphometry in brain structures from structural neuroimaging. We used a subset of 80 participants from the Baltimore Longitudinal Study of Aging, who had both brain MRI and vestibular physiological data acquired during the same visit. Vestibular function was evaluated through the cervical vestibular-evoked myogenic potential (cVEMP). The brain structures of interest that we analyzed were the hippocampus, amygdala, thalamus, caudate nucleus, putamen, insula, entorhinal cortex (ERC), trans-entorhinal cortex (TEC) and perirhinal cortex, as these structures comprise or are connected with the putative "vestibular cortex." We modeled the volume and shape of these structures as a function of the presence/absence of cVEMP and the cVEMP amplitude, adjusting for age and sex. We observed reduced overall volumes of the hippocampus and the ERC associated with poorer vestibular function. In addition, we also found significant relationships between the shape of the hippocampus (p = 0.0008), amygdala (p = 0.01), thalamus (p = 0.008), caudate nucleus (p = 0.002), putamen (p = 0.02), and ERC-TEC complex (p = 0.008) and vestibular function. These findings provide novel insight into the multiple pathways through which vestibular loss may impact brain structures that are critically involved in spatial memory, navigation and orientation.

8.
Neurobiol Learn Mem ; 155: 474-485, 2018 11.
Article in English | MEDLINE | ID: mdl-30243850

ABSTRACT

Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.


Subject(s)
Ganglia, Invertebrate/metabolism , Memory, Long-Term/physiology , Mental Recall/physiology , Animals , Aplysia , Behavior, Animal , Gene Expression Profiling
9.
Otol Neurotol ; 39(6): 765-771, 2018 07.
Article in English | MEDLINE | ID: mdl-29889787

ABSTRACT

OBJECTIVE: This study evaluated whether reduced vestibular function in aging adults is associated with lower hippocampal volume. STUDY DESIGN: Cross-sectional study. SETTING: Baltimore Longitudinal Study of Aging, a long-running longitudinal cohort study of healthy aging. PATIENTS: Eligible participants were aged ≥ 60 years and had both vestibular physiological testing and brain magnetic resonance imaging at the same visit. INTERVENTION: Vestibular function testing consisted of the cervical vestibular-evoked myogenic potential (cVEMP) to assess saccular function, ocular VEMP to assess utricular function, and video head-impulse testing to assess the horizontal semicircular canal vestibulo-ocular reflex. MAIN OUTCOME MEASURE: Hippocampal volume calculated using diffeomorphometry. RESULTS: The study sample included 103 participants (range of 35-90 participants in subanalyses) with mean (±SD) age 77.2 years (±8.71). Multivariate linear models including age, intracranial volume, sex, and race showed that 1 µV amplitude increase of cVEMP was associated with an increase of 319.1 mm (p = 0.003) in mean hippocampal volume. We did not observe a significant relationship between ocular VEMP amplitude or vestibulo-ocular reflex gain and mean hippocampal volume. CONCLUSIONS: Lower cVEMP amplitude (i.e., reduced saccular function) was significantly associated with lower mean hippocampal volume. This is in line with previous work demonstrating a link between saccular function and spatial cognition. Hippocampal atrophy may be a mechanism by which vestibular loss contributes to impaired spatial cognition in older adults. Future work using longitudinal data will be needed to evaluate the causal nature of the association between vestibular loss and hippocampal atrophy.


Subject(s)
Aging/pathology , Hippocampus/pathology , Vestibular Evoked Myogenic Potentials/physiology , Aged , Aged, 80 and over , Baltimore , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Vestibular Function Tests
10.
BMC Med Imaging ; 17(1): 25, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28381245

ABSTRACT

BACKGROUND: Tagged Magnetic Resonance (tMR) imaging is a powerful technique for determining cardiovascular abnormalities. One of the reasons for tMR not being used in routine clinical practice is the lack of easy-to-use tools for image analysis and strain mapping. In this paper, we introduce a novel interdisciplinary method based on correlation image velocimetry (CIV) to estimate cardiac deformation and strain maps from tMR images. METHODS: CIV, a cross-correlation based pattern matching algorithm, analyses a pair of images to obtain the displacement field at sub-pixel accuracy with any desired spatial resolution. This first time application of CIV to tMR image analysis is implemented using an existing open source Matlab-based software called UVMAT. The method, which requires two main input parameters namely correlation box size (C B ) and search box size (S B ), is first validated using a synthetic grid image with grid sizes representative of typical tMR images. Phantom and patient images obtained from a Medical Imaging grand challenge dataset ( http://stacom.cardiacatlas.org/motion-tracking-challenge/ ) were then analysed to obtain cardiac displacement fields and strain maps. The results were then compared with estimates from Harmonic Phase analysis (HARP) technique. RESULTS: For a known displacement field imposed on both the synthetic grid image and the phantom image, CIV is accurate for 3-pixel and larger displacements on a 512 × 512 image with (C B ,S B )=(25,55) pixels. Further validation of our method is achieved by showing that our estimated landmark positions on patient images fall within the inter-observer variability in the ground truth. The effectiveness of our approach to analyse patient images is then established by calculating dense displacement fields throughout a cardiac cycle, and were found to be physiologically consistent. Circumferential strains were estimated at the apical, mid and basal slices of the heart, and were shown to compare favorably with those of HARP over the entire cardiac cycle, except in a few (∼4) of the segments in the 17-segment AHA model. The radial strains, however, are underestimated by our method in most segments when compared with HARP. CONCLUSIONS: In summary, we have demonstrated the capability of CIV to accurately and efficiently quantify cardiac deformation from tMR images. Furthermore, physiologically consistent displacement fields and circumferential strain curves in most regions of the heart indicate that our approach, upon automating some pre-processing steps and testing in clinical trials, can potentially be implemented in a clinical setting.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardium/pathology , Algorithms , Humans , Image Interpretation, Computer-Assisted/methods , Phantoms, Imaging , Rheology
11.
J Med Syst ; 39(4): 205, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25686912

ABSTRACT

A method for electroencephalography (EEG) - near-infrared spectroscopy (NIRS) based assessment of neurovascular coupling (NVC) during anodal transcranial direct current stimulation (tDCS). Anodal tDCS modulates cortical neural activity leading to a hemodynamic response, which was used to identify impaired NVC functionality. In this study, the hemodynamic response was estimated with NIRS. NIRS recorded changes in oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations during anodal tDCS-induced activation of the cortical region located under the electrode and in-between the light sources and detectors. Anodal tDCS-induced alterations in the underlying neuronal current generators were also captured with EEG. Then, a method for the assessment of NVC underlying the site of anodal tDCS was proposed that leverages the Hilbert-Huang Transform. The case series including four chronic (>6 months) ischemic stroke survivors (3 males, 1 female from age 31 to 76) showed non-stationary effects of anodal tDCS on EEG that correlated with the HbO2 response. Here, the initial dip in HbO2 at the beginning of anodal tDCS corresponded with an increase in the log-transformed mean-power of EEG within 0.5Hz-11.25Hz frequency band. The cross-correlation coefficient changed signs but was comparable across subjects during and after anodal tDCS. The log-transformed mean-power of EEG lagged HbO2 response during tDCS but then led post-tDCS. This case series demonstrated changes in the degree of neurovascular coupling to a 0.526 A/m(2) square-pulse (0-30 s) of anodal tDCS. The initial dip in HbO2 needs to be carefully investigated in a larger cohort, for example in patients with small vessel disease.


Subject(s)
Cerebrovascular Circulation/physiology , Electroencephalography/methods , Hemodynamics/physiology , Spectroscopy, Near-Infrared/methods , Stroke/physiopathology , Transcranial Direct Current Stimulation , Adult , Aged , Cerebral Cortex , Female , Hemoglobin, Sickle/metabolism , Humans , Leghemoglobin/metabolism , Male , Middle Aged , Stroke Rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL
...